一、题目

请实现一个函数,输入一个整数,输出该数二进制表示中1的个数。例如把9表示成二进制1001,有2位1。因此如果输入9,该函数输出2。

二、解题思路

①位移+计数 每次右移一位,不断和1进行与运算,直到位0。

②循环让(n - 1) & n。如果n的二进制表示中有k个1,那么这个方法只需要循环k次即可。其原理是不断清除n的二进制表示中最右边的1,同时累加计数器,直至n为0。因为从二进制的角度讲,n相当于在n - 1的最低位加上1。举个例子,8(1000)= 7(0111)+ 1(0001),所以8 & 7 = (1000)&(0111)= 0(0000),清除了8最右边的1(其实就是最高位的1,因为8的二进制中只有一个1)。再比如7(0111)= 6(0110)+ 1(0001),所以7 & 6 = (0111)&(0110)= 6(0110),清除了7的二进制表示中最右边的1(也就是最低位的1)。

三、解题代码

public class Test {  

    /** 
     * 请实现一个函数, 输入一个整数,输出该数二进制表示中1的个数。 
     * 例如把9表示成二进制是1001 ,有2位是1. 因此如果输入9,该出2。 
     * 
     * @param n 待的数字 
     * @return 数字中二进制表表的1的数目 
     */  
    public static int numberOfOne(int n) {  
        // 记录数字中1的位数  
        int result = 0;  

        // JAVA语言规范中,int整形占四个字节,总计32位  
        // 对每一个位置与1进行求与操作,再累加就可以求出当前数字的表示是多少位1  
        for (int i = 0; i < 32; i++) {  
            result += (n & 1);  
            n >>>= 1;  
        }  

        // 返回求得的结果  
        return result;  
    }  

    /**
     * @param n 待的数字 
     * @return 数字中二进制表表的1的数目 
     */  
    public static int numberOfOne2(int n) {  
        // 记录数字中1的位数  
        int result = 0;  

        // 数字的二进制表示中有多少个1就进行多少次操作  
        while (n != 0) {  
            result++;  
            // 从最右边的1开始,每一次操作都使n的最右的一个1变成了0,  
            // 即使是符号位也会进行操作。  
            n = (n - 1) & n;  
        }  

        // 返回求得的结果  
        return result;  
    }    
}
Copyright © ruheng.com 2017 all right reserved,powered by Gitbook该文件修订时间: 2018-05-12 01:48:13

results matching ""

    No results matching ""