一、最小生成树
在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。
例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。
二、克鲁斯卡尔算法介绍
克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。
具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。
三、克鲁斯卡尔算法图解
以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。
第1步:将边
边
第2步:将边
上一步操作之后,边
第3步:将边
上一步操作之后,边
第4步:将边加入R中。
上一步操作之后,边
第5步:将边
上一步操作之后,边
第6步:将边加入R中。
上一步操作之后,边
四、克鲁斯卡尔算法分析
根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
问题一 对图的所有边按照权值大小进行排序。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。
问题一很好解决,采用排序算法进行排序即可。
问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"(关于这一点,后面会通过图片给出说明)。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。 以下图来进行说明:
在将
(01) C的终点是F。
(02) D的终点是F。
(03) E的终点是F。
(04) F的终点是F。
关于终点,就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。 因此,接下来,虽然
五、克鲁斯卡尔算法的代码说明
有了前面的算法分析之后,下面我们来查看具体代码。这里选取"邻接矩阵"进行说明,对于"邻接表"实现的图在后面的源码中会给出相应的源码。
1. 基本定义
// 边的结构体
private static class EData {
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
public EData(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
};
EData是邻接矩阵边对应的结构体。
public class MatrixUDG {
private int mEdgNum; // 边的数量
private char[] mVexs; // 顶点集合
private int[][] mMatrix; // 邻接矩阵
private static final int INF = Integer.MAX_VALUE; // 最大值
...
}
MatrixUDG是邻接矩阵对应的结构体。mVexs用于保存顶点,mEdgNum用于保存边数,mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。
2. 克鲁斯卡尔算法
/*
* 克鲁斯卡尔(Kruskal)最小生成树
*/
public void kruskal() {
int index = 0; // rets数组的索引
int[] vends = new int[mEdgNum]; // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
EData[] rets = new EData[mEdgNum]; // 结果数组,保存kruskal最小生成树的边
EData[] edges; // 图对应的所有边
// 获取"图中所有的边"
edges = getEdges();
// 将边按照"权"的大小进行排序(从小到大)
sortEdges(edges, mEdgNum);
for (int i=0; i<mEdgNum; i++) {
int p1 = getPosition(edges[i].start); // 获取第i条边的"起点"的序号
int p2 = getPosition(edges[i].end); // 获取第i条边的"终点"的序号
int m = getEnd(vends, p1); // 获取p1在"已有的最小生成树"中的终点
int n = getEnd(vends, p2); // 获取p2在"已有的最小生成树"中的终点
// 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
if (m != n) {
vends[m] = n; // 设置m在"已有的最小生成树"中的终点为n
rets[index++] = edges[i]; // 保存结果
}
}
// 统计并打印"kruskal最小生成树"的信息
int length = 0;
for (int i = 0; i < index; i++)
length += rets[i].weight;
System.out.printf("Kruskal=%d: ", length);
for (int i = 0; i < index; i++)
System.out.printf("(%c,%c) ", rets[i].start, rets[i].end);
System.out.printf("\n");
}