一、题目
Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4], the contiguous subarray [2,3] has the largest product = 6.
在一个数组中,寻找一个连续子数组使得成绩最大。
二、解题思路
这题是求数组中子区间的最大乘积,对于乘法,我们需要注意,负数乘以负数,会变成正数,所以解这题的时候我们需要维护两个变量,当前的最大值,以及最小值,最小值可能为负数,但没准下一步乘以一个负数,当前的最大值就变成最小值,而最小值则变成最大值了。
DP的四要素
- 状态:
max_product[i]
: 以nums[i]结尾的max subarray productmin_product[i]
: 以nums[i]结尾的min subarray product
- 方程:
max_product[i] = getMax(max_product[i-1] * nums[i], min_product[i-1] * nums[i], nums[i])
min_product[i] = getMin(max_product[i-1] * nums[i], min_product[i-1] * nums[i], nums[i])
- 初始化:
max_product[0] = min_product[0] = nums[0]
- 结果:
- 每次循环中 max_product[i] 的最大值
三、解题代码
public class Solution {
/**
* @param nums: an array of integers
* @return: an integer
*/
public int maxProduct(List<Integer> nums) {
int[] max = new int[nums.size()];
int[] min = new int[nums.size()];
min[0] = max[0] = nums.get(0);
int result = nums.get(0);
for (int i = 1; i < nums.size(); i++) {
min[i] = max[i] = nums.get(i);
if (nums.get(i) > 0) {
max[i] = Math.max(max[i], max[i - 1] * nums.get(i));
min[i] = Math.min(min[i], min[i - 1] * nums.get(i));
} else if (nums.get(i) < 0) {
max[i] = Math.max(max[i], min[i - 1] * nums.get(i));
min[i] = Math.min(min[i], max[i - 1] * nums.get(i));
}
result = Math.max(result, max[i]);
}
return result;
}
}